HOME > 弦理論 > 弦の作用> 南部-後藤作用
【前ページ】 【次ページ】
本ページでは…
本ページでは、南部-後藤作用と呼ばれる、平行四辺形である微小面積を用いた世界面を導く作用を求める。
前ページまで…
前ページでは、世界面を導く相対論的な作用\(S\)は
\begin{align*}S=-\frac{T_{\scriptsize 0}}{c}\int dA\tag{1}\end{align*}
となって、\(\frac{T_{\scriptsize 0}}{c}\)に固有面積\(\int dA\)を掛けて負号をつけた形になることを見た。
内容
前ページの例では、微小面積\(dA\)は長方形であった。しかし、一般的な微小面積\(dA\)は、面積が底辺×高さで表される平行四辺形となるため、平行四辺形の微小面積\(A\)を用いた世界面の作用を求める。
初めに、ユークリッド空間を考える。ユークリッド空間では、ベクトル\(\boldsymbol v=(x^1,x^2,x^3)\)とベクトル\(\boldsymbol w=(\bar{x}^1,\bar x^2,\bar x^3)\)の内積はユークリッド計量\(\eta’_{\mu\nu}\)を用いて、
\begin{align*}\boldsymbol v\cdot\boldsymbol w=\eta’_{\mu\nu}x^\mu\bar x^\nu\tag{2}\end{align*}
であり、ノルムは
\begin{align*}\vert\boldsymbol v\vert&=\sqrt{(\boldsymbol v\cdot\boldsymbol v)}=\sqrt{\eta’_{\mu\nu}x^\mu x^\nu}\tag{3}\\\vert\boldsymbol w\vert&=\sqrt{(\boldsymbol w\cdot\boldsymbol w)}=\sqrt{\eta’_{\mu\nu}\bar x^\mu\bar x^\nu}\tag{4}\end{align*}
と表される。また、ベクトル\(\boldsymbol v\)と\(\boldsymbol w\)から作られる平行四辺形の面積\(A\)は
\begin{align*}A=\vert\boldsymbol v\vert\vert\boldsymbol w\vert\vert\sin\theta\vert\tag{5}\end{align*}
と表されるから、
\begin{align*}A&=\vert \boldsymbol v\vert\vert \boldsymbol w\vert\vert\sin\theta\vert\\&=\sqrt{(\boldsymbol v\cdot \boldsymbol v)(\boldsymbol w\cdot \boldsymbol w)\sin^2\theta}\\&=\sqrt{ (\boldsymbol v\cdot \boldsymbol v)(\boldsymbol w\cdot \boldsymbol w)-(\boldsymbol v\cdot \boldsymbol v)(\boldsymbol w\cdot \boldsymbol w)\cos^2\theta}\\&=\sqrt{(\boldsymbol v\cdot \boldsymbol v)(\boldsymbol w\cdot \boldsymbol w)-(\boldsymbol v\cdot \boldsymbol w)^2}\tag{6}\end{align*}
と変形でき、ベクトル\(d\boldsymbol v\)と\(d\boldsymbol w\)から作られる平行四辺形の微小面積は
\begin{align*}dA=\sqrt{(d\boldsymbol v\cdot d\boldsymbol v)(d\boldsymbol w\cdot d\boldsymbol w)-(d\boldsymbol v\cdot d\boldsymbol w)^2}\tag{7}\end{align*}
と求まる。
式(7)の面積はユークリッド内積で表されており、ローレンツ変換において不変ではない。ローレンツ変換で不変な面積(固有面積と呼ぶ)にするためには、ユークリッド計量\(\eta’_{\mu\nu}\)を用いた内積
\begin{align*}d\boldsymbol v\cdot d\boldsymbol w&=\eta’_{\mu\nu}dx^\mu d\bar x^\nu\tag{2}\\d\boldsymbol v\cdot d\boldsymbol v&=\eta’_{\mu\nu}dx^\mu dx^\nu\tag{8}\\d\boldsymbol w\cdot d\boldsymbol w&=\eta’_{\mu\nu}d\bar x^\mu d\bar x^\nu\tag{9}\end{align*}
を、ミンコフスキー計量\(\eta_{\mu\nu}\)を用いたミンコフスキー内積
\begin{align*}dv\cdot d w=\eta_{\mu\nu}dx^\mu d\bar x^\nu\tag{10}\\dv\cdot dv=\eta_{\mu\nu}dx^\mu dx^\nu\tag{11}\\d w\cdot dw=\eta_{\mu\nu}d\bar x^\mu d\bar x^\nu\tag{12}\end{align*}
に置き換えればよい。これは、ユークリッド空間での距離の二乗
\begin{align*}ds^2=\eta’_{\mu\nu}dx^\mu dx^\nu\tag{13}\end{align*}
をローレンツ変換で不変な距離(世界距離)の二乗
\begin{align*}ds^2=\eta_{\mu\nu}dx^\mu dx^\nu\tag{14}\end{align*}
にするために、ユークリッド計量\(\eta’_{\mu\nu}\)をミンコフスキー計量\(\eta_{\mu\nu}\)に置き換えて、内積をミンコフスキー内積に変えたことと同様である。
内積をミンコフスキー内積に置き換えるときに、1つ注意点がある。世界距離において、世界距離の二乗\((ds)^2\)は正負どちらにもなることができ、世界距離\(ds\)は実数と虚数どちらにもなることができた。ある世界距離\(ds\)が実数または虚数どちらになるかは、世界距離の二乗\((ds)^2\)の定義の違い
\begin{align*}ds^2=\eta_{\mu\nu}dx^\mu dx^\nu\tag{15}\end{align*}
or
\begin{align*}-ds^2=\eta_{\mu\nu}dx^\mu dx^\nu\tag{16}\end{align*}
だけであり、世界距離\(ds\)が実数または虚数どちらになってもローレンツ不変性は保たれ、本質は変わらない。
世界距離の例と同様に、固有面積の二乗\((dA)^2\)も正負どちらにもなることができ、固有面積\(dA\)も実数と虚数どちらにもなることができる。そして、式(7)の内積をミンコフスキー内積に変える際に、ある固有面積\(dA\)が実数または虚数どちらになるかは定義
\begin{align*}dA=\sqrt{(dv\cdot dv)(dw\cdot dw)-(dv_{\scriptsize 1}\cdot dv_{\scriptsize 2})^2}\tag{17}\end{align*}
or
\begin{align*}dA=\sqrt{(d v_{\scriptsize 1}\cdot d v_{\scriptsize 2})^2-(d v\cdot d v)(d w\cdot d w)}\tag{18}\end{align*}
の違いだけであり、どちらになってもローレンツ不変性は保たれる。今回、固有面積\(dA\)が実数になるように式(18)の定義を採用する。
式(18)で表される世界面の固有面積\(dA\)が常に実数になることは次のように確かめられる。まず、世界面のある点\(R\)において世界面に正接する全てのベクトル\(d r\)を考えたとき、そのベクトル\(d r=(dx^0,dx^1,dx^2,dx^3)\)には
\begin{align*}d r\cdot d r=\eta_{\mu\nu}dx^\mu dx^\nu\text<0\tag{19}\end{align*}
となる空間的(スペースライク)なベクトルと、
\begin{align*}d r\cdot d r=\eta_{\mu\nu}dx^\mu dx^\nu\text>0\tag{20}\end{align*}
となる時間的(タイムライク)なベクトルが含まれる。空間的なベクトルの例としては同時刻\(dx^0=0\)における点\(R\)から弦に沿った方向への正接ベクトルがあり、時間的なベクトルの例としては点\(R\)から光速以下の速さで移動した方向への正接ベクトルがある。
平行四辺形の微小面積を構成するベクトル\(d v\)と\(d w\)は互いに線型独立な関係にあるため、ベクトルの大きさは異なるが正接ベクトル\(d r\)をベクトル\(d v\)と\(d w\)を用いて表すことができる。
\begin{align*}d r=\lambda d v+d w\tag{21}\end{align*}
正接ベクトル\(d r\)同士のミンコフスキー内積をとると
\begin{align*}d r \cdot d r=\lambda^2(d v\cdot d v)+2\lambda(d v\cdot d w)+(d w\cdot d w)\tag{22}\end{align*}
となり、式(19)と式(20)よりこの式(22)は正負どちらの符号もとる。この式(22)を\(\lambda\)の二次関数と捉えると、式(22)が正負どちらの符号もとるとき、次の二次方程式
\begin{align*}\lambda^2(d v\cdot d v)+2\lambda(d v\cdot d w)+(d w\cdot d w)=0\tag{23}\end{align*}
は2つの解を持ち、そのための判別式は
\begin{align*}(d v\cdot d w)^2-(d v\cdot d v)(d w\cdot d w)\text >0\tag{24}\end{align*}
となる。この式(24)より、式(18)の根号の中は正となり固有面積\(dA\)が実数となることが分かる。
最後に、平行四辺形の微小面積を作るベクトル\(d v\)と\(d w\)が次のようにパラメーター付け
\begin{align*}dv^\mu=\frac{\partial X^\mu}{\partial d\tau}d\tau\tag{25}\\dw^\mu=\frac{\partial X^\mu}{\partial d\sigma}d\sigma\tag{26}\end{align*}
されているとすると、微小面積\(dA\)は
\begin{align*}dA&=d\tau d\sigma\sqrt{\left(\frac{\partial X^\mu}{\partial\tau}\frac{\partial X_{\mu}}{\partial\sigma}\right)^2-\left(\frac{\partial X^\mu}{\partial\tau}\frac{\partial X_{\mu}}{\partial\tau}\right)\left(\frac{\partial X^\nu}{\partial\sigma}\frac{\partial X_{\nu}}{\partial\sigma}\right)}\tag{27}\end{align*}
と表され、世界面の作用は
\begin{align}S&=-\frac{T_{\scriptsize 0}}{c}\int d\tau d\sigma\sqrt{\left(\frac{\partial X^\mu}{\partial\tau}\frac{\partial X_{\mu}}{\partial\sigma}\right)^2-\left(\frac{\partial X^\mu}{\partial\tau}\frac{\partial X_{\mu}}{\partial\tau}\right)\left(\frac{\partial X^\nu}{\partial\sigma}\frac{\partial X_{\nu}}{\partial\sigma}\right)}\tag{28}\end{align}
となり、南部-後藤作用と呼ばれる。
【前ページ】 【次ページ】
HOME > 弦理論 > 弦の作用> 南部-後藤作用